Exercise 74

(a) Where does the normal line to the ellipse $x^{2}-x y+y^{2}=3$ at the point $(-1,1)$ intersect the ellipse a second time?
(b) Illustrate part (a) by graphing the ellipse and the normal line.

Solution

Differentiate both sides with respect to x.

$$
\frac{d}{d x}\left(x^{2}-x y+y^{2}\right)=\frac{d}{d x}(3)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
\begin{gathered}
\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}(x y)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(3) \\
2 x-\left[\frac{d}{d x}(x)\right] y-x\left[\frac{d}{d x}(y)\right]+2 y \frac{d y}{d x}=0 \\
2 x-(1) y-x \frac{d y}{d x}+2 y \frac{d y}{d x}=0
\end{gathered}
$$

Solve for $d y / d x$.

$$
\begin{gathered}
2 x-y+(-x+2 y) \frac{d y}{d x}=0 \\
(-x+2 y) \frac{d y}{d x}=y-2 x \\
\frac{d y}{d x}=\frac{y-2 x}{-x+2 y}
\end{gathered}
$$

The slope of the tangent line at $(-1,1)$ is

$$
m=\frac{(1)-2(-1)}{-(-1)+2(1)}=1,
$$

so the slope of the normal line is the negative reciprocal.

$$
m_{\perp}=-\frac{-(-1)+2(1)}{(1)-2(-1)}=-1
$$

Use the point-slope formula to obtain the equation of the normal line.

$$
\begin{gathered}
y-1=-1(x-(-1)) \\
y-1=-(x+1) \\
y-1=-x-1 \\
y=-x
\end{gathered}
$$

In order to find where the normal line intersects the ellipse, solve the following system of equations.

$$
\left.\begin{array}{rl}
y & =-x \\
x^{2}-x y+y^{2} & =3
\end{array}\right\}
$$

Substitute the formula for y into the second equation and solve for x.

$$
\begin{gathered}
x^{2}-x(-x)+(-x)^{2}=3 \\
x^{2}+x^{2}+x^{2}=3 \\
3 x^{2}=3 \\
x^{2}=1 \\
x= \pm 1
\end{gathered}
$$

The y-value corresponding to $x=1$ is $y=-(1)=-1$, so the second point where the normal line intersects the ellipse is $(1,-1)$.

